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(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing

1 Objective
The objective of this research program was to develop mathematical foundations of information gathering
through an integrated theory of sensing, inference, and control. The goal of the team was to develop a new
framework for autonomous operations that will extend the state of the art in distributed learning and modeling
from data, and tightly integrate these models into new decentralized cooperative planning algorithms. The
main output of this effort will be a fundamental theory to integrate decentralized information driven planning
methods for heterogenous teams with nonparametric Bayesian models of uncertainty. The feasibility and
aspects of the value of the theory were demonstrated via integrated software and hardware experiments.

Phase I included an extensive set of mathematical and algortihmic developments which formed the basis
of an integrated system. Bayesian inference represented by graphical models mediated between sensors and
event probabilities of interest. Temporal Logic mediated between the use of graphical models for inference
and the interpretation of system queries. In the proposed architecture, constructive Temporal Logic approach
reduces first-order logic queries to a system of graphical models.

During, phase 2 algorithmic development emphasized transitioning from ensor–centric to scene–centric
processing. As such, issues such as sensing geometry and the associated nuisance parameters, noisy and
missing data, and mult-view and multi-modal sensing were important considerations for modeling and
development. Methods to exploit information measures and their relation to the instantiated graphical
structures were developed to investigate the trade off computational resource costs with the quality of
approximate inference methods. Hierarchical Bayesian nonparametric methods were investigated for the
purpose of modleing both contextual representations and specific instances of object, attributes and relations
envisioned under the program.

While a significant aspect of MSEE Phase II and III was devoted system development, it is still the case
that fundamental research in distributed planning and control, sensor and information management, and
intent recognition were investigated to achieve the amitious goals of the program.

2 Overview
We provide an overview of the system developed by the MIT team as well as a description of the research
results which are further detailed in technical publication listed at the end of this report.

2.1 Team Members
Table 1 lists the various key members of the team (by institution) and their primary areas of expertise and
responsibilities.

Org Capabilities & Responsibilities Key Personnel
MIT BNP Models, Inference, & Planning. Dr. John Fisher, Prof. Jon How
ICSI BNP

Models, Large scale object recognition.
Prof. Trevor Darrell

UCLA 3D/Geometric scene representation Prof. Stefano Soatto
ETH Zurich Discrete and

mixed integer-continuous optimization.
Prof. Andreas Krause

BAE Systems Temporal logic & system integration Dr. Luis Galup,
Ms. Wendy Mungovan, Mr. Manuel Cuevas

Table 1: Team members and primary technical expertise. Note that Prof. Krause joined the team at the
beginning of Phase 2, while Dr. Galup and Ms. Mungovan left the team at the completion of Phase 2.
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(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing

Figure 1: Function system block diagram of MIT MSEE SUT implementation.

2.2 System Description
Figure 1 depicts the funtional system block diagram of the MIT MSEE SUT implementation. Communication
with the EES, query ingestion, query parsing, and predicate tasking are performed within the SUT Framework
developed by BAE. Scene modeling including labeling of moving and static objects as well as determining
3D geometry are performed off-line and stored in a database. Geometric modeling is performed by modules
developed by UCLA while object tracking and scene labeling are performed by modules developed by
MIT. Finally, object labeling (including tracked objects) are also performed off-line using a variant of Caffe
developed by ICSI. All results are stored in postgres databases for later indexing during query processing.

The goal was to develop a working system for query-based scene understanding that integrates physical
sensor models of video cameras, Bayesian reasoning via structured graphical models and integration of
contextual models. Following the Phase 2 demonstration, the team had produced a functioning end-to-end
system demonstrating the following functionality:
• large scale object classification,
• semi-automated 3D scene modeling,
• extensible system for predicate implementation,
• ability to reason over geometric, dynamic, and behavioral relations

The Phase 2 system emphasized sensor-centric processing for predicate reasoning with extensions to
3D reasoning aided by 3D scene representation. An intial working version of the system was transitioned
to Air Force Research Laboratory. Recent extensions are in the process of being transitioned, as well.

2.3 Processing Flow
Figure 2 depicts the conceptual approach of the MIT MSEE design. Here, an intermediate representation
comprised of – (1) a scene represenation, (2) object and mover attribution, and (3) tracking of movers
– separates sensing from reasoning. The advantage is that reasoning can be defined in terms physical
relations (as paramerized by the representation) and logical functions. Queries (as prescribed by the formal
language specification) are comprised of predicates which are defined deterministically over the intermediate
representation. As such, uncertainty is modeled in the intermediate representation (e.g. due to sensor noise

October 22, 2015 2
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(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing

EES SUT

sensors

scene representation attribution tracker

predicate processing logic processing

Figure 2: Conceptual Diagram of MIT MSEE Design

and model mismatch) rather than in the reasoning system.
As a result, predicates are mapped to collections of inference algorithms implemented as modular and

composable probabilistic graphical models. Conceptually one could instantiate a monolithic model and
focus inference on the relevant latent variables, however, for the complexity of the scenes contemplated
by MSEE and the number of sensors, such an approach is intractable. An additional (and substantial) benefit
of the modular approach is that it allows efficient and principled handling of nuisance parameters only when
necessary, optimization of the measurement process, as well as instantiation of only those aspects of the
representation that are relevant to the query. The modular approach also easily lends itself to parallelization.

We note that graphical models are not a panacea, rather they are a framework. Whle they aid in organizing
relationships between queries, sensors, and the scene while making dependency assumptions explicit, they
only suggest methods for inference. The critical choice of how to perform inference in a given graphical
model is left to the designer and will depend on the definitions of predicates which reason over that graphical
model. That being said, the modular approach allows these models to be designed independently.

3 System Performance
3.1 Predicate Handling Framework
Predicate analysis and evaluation are implemented as a separate module (denoted by the red box in Figure
3. In the MIT design and implementation, predicates results are treated as independent. This choice was
made for practical reasons due to the fact that modeling (and reasoning) over dependent predicates is not
feasible given the number of relations the system would have to consider. Treating them independently is
akin to making what is known at the naive Bayes assumption. One practical consequence is that predicates
can be evaluated in parallel allowing for significant speedups in analysis. Predicates are roughly grouped
into three categories, behavior predicates, relationship predicates, and action predicates. These groupings
are shown in Table 2.

As currently implemented, incorporation of new predicates is a straightforward process of defining the
predicate as a logical function of its inputs and their relation to the physical properties of the scene. For
example, the predicate “together” is defined in terms of the proximity of the arguments specified in physical
units (when available) or in terms of sensor dimensions (e.g. pixels) when the physical units are not availalbe.
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Figure 3: Predicate evaluation is implemented as a separate module, denoted by red box in figure.

Table 2: Predicate categorization and implementation status.

Behavior Relationships Actions 

Implemented 
Not 

Implemented 
Implemented 

Not 
Implemented 

Implemented 
Not 

Implemented 

1. Starting 
2. Moving 
3. Stopping 
4. Stationary 
5. Turning 
6. Turning-right 
7. Turning-left 
8. U-turn 
9. Crawling 
10. Walking 
11. Running 
12. Sitting 
13. Standing 
14. Talking 
15. Writing 
16. Reading 
17. Eating 
18. Pointing 
19. Open 
20. Closed 

 1. Same-object 
2. Part-of 
3. CLOS 
4. Occluding 
5. On 
6. Together 
7. Closer 
8. Father 
9. Below 
10. Same-motion 
11. Opposite-

motion 
12. Following 
13. passing 

1. Touching 
2. Facing 
3. Facing-

opposite 
4. Inside 
5. Outside 
6. Putting-in 

1. Driving 
2. Entering 
3. Exiting 
4. Crossing 
5. Carrying 
6. Mounting 
7. Dismounting 
8. Putting-up 
9. Taking-down 
10. Throwing 
11. Catching 
12. Putting-down 
13. Picking-up 
14. Dropping 

 

1. Loading 
2. Unloading 
3. Donning 
4. Doffing 
5. Wearing 
6. Swinging 

 

The former is always possible so long as the scene properties have been specified (described elsewhere)
in which case the predicate makes use of so-called “helper functions” used to define the relation of predicate
arguments to the scene being analyzed. Whether to utilize the physical dimensions of the scene (which
is subject to sensor uncertainty) and the associated helper functions is left to the predicate designer.

Details of the predicate handling framework are shown in the system block diagram of Figure 4. The
predicate handling framework (1) interfaces with the MSEE framework (i.e the system which receives the
query from the EES and parses it, (2) accesses the database of precomputed analysis (tracks of movers,
labels of objects, and the geometric description of the scene), (3) determines the order and combination
of which predicates to evaluate, and (4) handles various special cases and checks for errors.

The syntax for the MSEE framework call to the predicate handling framework (circle 1 in Figure 4) is
shown in table 3. Having received the predicate call from the MSEE framework, the predicate handling
framework separate predicate calls for each valid combination of unary, binary, or ternary arguments along
with associated track and scene info. The syntax for calling a specific instance of a predicate (circle 2 in
Figure 4) is shown in Table 4. While the MSEE framework can parallelize calls to the predicate handling
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Figure 4: Predicate handling framework. Predicates access the results of sensor data processing via
a database of pre-computed analysis including 3D Scene analysis, tracking of moving objects, and
classification of moving and static objects.

Table 3: Syntax for MSEE framework call to predicate handling framework
Syntax:
poe MIT(<predicate>,<time window start>,<time window end>,

<obj1>,[obj2],[obj3]);
Inputs: Output:
Predicate to evaluate (string). Matrix containing probability of the

predicate being true for each of the object
combinations.

Time Window of interest (string).
List of objects for each of the predicate
inputs (videoID, trackID).

framework (once the query is parsed) across predicates, further parallelization is possible within the predicate
handling framework across instances of argument combinations.

3.2 Predicate Processing Time:
Figures 5 and 6 provide details of the processing time broken down by predicate. Recall that tracking, scene
construction, and object labeling are peformed ahead of any query time. Consequently, the values in these
figures reflect the time the complete predicate reasoning and data base access times and do not include
sensor processing time. In future implementations, it would be straightforward to store sensor processing
time as part of the pre-processing step. This would allow analysis that computes both sensor processing
time and logic processing time. Both depend on the complexity of the query, the complexity of the scene,
the number of sensors, the time duration over which the query is applied.

Figure 5 reflects the total time to process each predicate for a given query. For a given query, this would
be the time to process all valid arguments for a specific predicate. As seen in the figure, most predicates
take very little time to process. Multiple values for a given predicate reflect that the predicate was used
in more than one query. The differences in processing time are a consequence of the number of arguments
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Table 4: Syntax for predicate handling framework to individual predicate instances.
Syntax:
predicate ptr(info,objs,tracks, scene 3d,params);
Inputs: Output:
General Info (cell array) Structure containing indicator whether

predicate is true or false, and associated
probability.

Track Instances (cell array).
Tracks (cell array).
3D Representation (function pointers).
Predicate parameters (structure)
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Figure 5: Processing Time as a Function of Predicates

passed to the predicate for that particular query. These values are more reflective of the complexity of the
various queries used for Phase 2 testing. Figure 6 reflects the time to process each predicate for a single
instance. Here the differences in processing time are reflective of the temporal duration associated with
the particular instance of the predicate evaluation.

3.3 Query Accuracy:
Phase 2 involved 276 queries submitted to the query. Of those, 218 queries were processed. Some predicates
were not supported and, as a result, any query which contained those predicates was not processed (a total
of 58). The 218 processed queries resulted in 390 predicate calls. This is indicative of the fact that many
queries were comprised of a single predicate and very few queries incorporated 4 or more predicates (see
Figure 8(left))

The system performance for 218 queries is detailed in Figure 7. The table at the left of the figure provides
counts of true positives, false positives, true negatives, and false negatives. The chart at the right depicts
the relative percentages. We note that the system as implemented has a bias towards returning a “true” value.
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Figure 6: Processing Time Normalized by Predicate Evaluations

Provided
True False

True 77 46
Correct False 51 44

True Positive (35.3 %)

True Negative (20.2 %)

False Negative (21.1 %)

False Positive (23.4 %)

Figure 7: Query Performance.

This is due to interpreting a query (or predicate) as being true for a given time period even if it is true only
once (i.e. at a single point in time). The consequence is that as the time period grows, even if a predicate
reports a low-probability of being true at every time instance, the overall probability approaches unity as
the length of the time period grows. This is perhaps the simplest interpretation of what constitutes a query
or predicate being true. Other approaches could be adopted, but were not investigated.

Not all predicates are equal: While the figure 7 reflects average performance for the system when
evaluated over the choice of queries for phase 2, it is unlikely that it accurately reflects the overall system
performance as the queries chosen for testing were biased towards the use of a small number of predicates.
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Figure 8: (left) Breakdown of number of predicates per query, (middle) wordle where the size of the
predicate name reflects the usage frequency across queries, and (right) pie-chart with counts of predicate
usage across queries.
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Figure 9: Accuracy of each predicate across all queries.

This can be seen in Figure 8 which visualize the relative frequency with which predicates were used within the
phase 2 testing queries. As can be seen, “part-of” and “same-object” were called significantly more often, 47
and 45 times each, as compared to “together” which was called once. Consequently, the query performance
numbers are largely reflective of the performance on the most frequently called predicates. Whether this
is an accurate reflection depends on the anticipated scenarios in which such a system would be used.

Figure 9 shows the relative accuracy of each predicate where blue reflects the number of times the
predicate was called and green the number of times the predicate returned a correct answer. We note that
performance on many queries is substantially above guessing, however, on three of the most frequently
called predicates, “on”, “part-of”, and “same-object”, the performance is fairly poor resulting in a larger
impact on system performance.
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4 Preprocessing
4.1 3D Scene Modeling
The methodology for constructing 3D information of the scene is described in the material provided in this
section. It was noted during the course of the program that the quality of the reconstruction, upon which accu-
rate spatial reasoning depends, is impacted by both the accuracy of the intrinsic parameters of the cameras and
knowledge of the sensing geometry. The former was provided, but the latter was not. Consequently, state-of-
the-art methods employing automatic detection of correspondences were utilized. The accuracy of these meth-
ods depends greatly on both the sensor geometry and the content of the scene. For some of the scenes, these
were not adequate to yield acceptable performance and as a result, manual correspondences were needed.

Details of the methodology are found in Section 8.1.

4.2 Boundary Accurate Tracker
As part of pre-processing the MIT design tracks all movers, storing the results in a database. Both the
location (within the sensor view) and the boundary of the object are computed. The tracker was partially
developed under the MSEE program and implements layered tracking, adaptive appearance models, and
occlusion reasoning.

Details of the methodology are found in Section 8.2.

4.3 Object Classification
As part of pre-processing the MIT all movers and static objects are classified using a variant of Caffe adapted
to the MSEE object hierarchy. The implementation provided by ICSI (co-PI Darrell) did not fully implement
the hierarchy, but nevertheless provided reasonable performance on many objects of interest. One impact
on performance is that only the highest scoring class was maintained for each object. As such, errors in
the use of the classfier had an undue impact on system performance. More robust performance would be
obtained if a full or partial distribution were maintained as part of the pre-processing. This is feasible, but
would complicate query processing owing to the increased combinatorial complexity. Consequently, the
simple approach was chosen for phase 2.

Details of the methodology are found in Section 8.3.

5 Discussion
5.1 Scene-wide 3D reasoning requires significant prior knowledge of sensor placement.
As described in the formal language specification, queries and associated predicates were defined as rea-
soning over a scene rather than a sensor. That is, the collection of sensors provides observations of the scene,
but the scene itself may not be limited to field-of-view of the sensors. Additionally, many predicates (as
defined) require extended spatial and temporal reasoning. For example, the predicate “clear-line-of-sight” can
potentially be used to reason over persons (or locations) that are not visible in the same sensor. Furthermore,
it is entirely possible that one could be interested in processing this particular predicate in order to reason
over individuals who may have at one time been visible in different sensors, but at the time of query one or
both individuals may no longer be directly observed. This does not preclude processing the query. As part
of scene understanding, individuals are tracked and as such, even when not directly observed, the system
has some information as to their location. While the example is somewhat extreme, it highlights the fact
that, as defined, reasoning over the 3D geometry of the scene is unavoidable unless one knows in advance
such queries will not be utilized. Many predicates implicitly require this capability.

The importance of this discussion is that it underlies the critical need for knowledge of the sensing
geometry. In the absence of this information, it must be inferred. In many cases for the Phase 2 testing,
the information was not adequately provided. For example, camera locations were (roughly) provided,
but direction of viewing was not. Furthermore, state-of-the-art methods for finding correspondences also

October 22, 2015 9

 
Approved for public release; distribution unlimited. 



(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing

proved to be inadequate for inferring the scene geometry to an acceptable quality for purposes of processing
queries. As a consequence, a manual and labor-intensive process was necessary in order to accommodate
the potential for these queries. The performers had no way of knowing ahead of time whether testing queries
would require this level of reasoning. It is the opinion of the PI that this complication was unnecessary
and did not serve the goals of the program.

5.2 Significant tradeoffs for state-of-the-art video-based object tracking.
Many of the predicates, especially those involving gestures or actions, require some segmentation of the of the
body pose. Consequently, this project chose to implement a video tracking algorithm which produced accurate
object boundaries. While results were satisfactory, real-time performance is challenged by current computat-
ing capabilities. As such, tracking speed was on the order of 10-20 seconds per frame. Some gains may be
achieved by better utilzation of multi-core processors and/or gpu processing. However, in the current frame-
work, object tracking is performed off-line in order to focus on reasoning performance. There exist video
trackers which are capable of tracking objects in real-time, however, these trackers do not produce boundary-
accurate results and furthermore, do not perform well when the number of moving objects is greater than ten.

This issue might be mitigated by combining fast bounding box trackers densely and boundary accurate
trackers only when the query requires it. Implementation of such a scheme was entertained in the original
design, but it was felt that the added complexity would risk successful completion of a working system.

5.3 Rolling shutter effect significantly degrade moving camera analysis.
For moving camera data, correspondences across frames were both dense and fairly robust. However, rolling
shutter artifacts, which manifest themselves as the image appearing to warp from frame-to-frame, result
in state-of-the-art structure-from-motion algorithms generating severely degraded results. While one could
incorporate rolling shutter into the model, to do so was beyond the scope of this project.

6 Students
The following is a list of students that have been supported by the project listed by institution.

6.1 MIT
• Randi Cabezas – PhD student (due to graduate Summer 2016)
• Jason Chang – Completed PhD, now at Google
• Zoran Dzunic – PhD student (due to graduate Fall 2015)
• Oren Freifeld – Postdoc
• Dan Levine – Completed PhD student, now at Jet Propulsion Laboratory
• Dahua Lin – Completed PhD students, now professor at CUHK
• Guy Rosman – Postdoc

6.2 UCLA
• Avinash Ravichandran - Completed postdoc; now at Amazon, INC.
• Jonathan Balzer - Completed postdoc; now at Vathos, GmbH (co-founder)
• Timothy Brightbill - Completed undergraduate degree
• Joshua Hernandez PhD student (due to graduate Summer 2015)
• Vasiliy Karasev PhD student (due to graduate Summer 2015)
• Nikolaos Karianakis - PhD student
• Sim-Lin Lau Staff Researcher Associate
• Stephen Phillips - Completed undergraduate degree
• Siyang Tang Completed MS degree; now at Apple, INC.
• Brian Taylor PhD student (due to graduate Fall 2015)
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• Chaohui Wang Completed postdoc; now at Max Planck Institute

6.3 ETH
• Yuxin Chen – PhD student (due to graduate Summer 2016)

6.4 ICSI
• Jiashi Feng – Postdoc
• Eric Tzeng – PhD student
• Ross Girshick – PhD student

7 Publications
During the course of this project, the PI and co-PIs published 40 conference and journal in a variety of
relevant and diverse topics including Bayesian nonparemetric models, system control, object recognition,
distributed sensing, Bayesian inference, tracking. A full list of project-related publications is maintained
at the following URL

http://projects.csail.mit.edu/csail-msee/pubs.html

The following is a list of publications funded (or partially funded) by this project that have either ap-
peared in the scientific literature ( or are pending review).

List of Project Publications
[1] Jason Chang and John W. Fisher III. Efficient mcmc sampling with implicit shape representations. In

Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), June 2011.
[2] Jason Chang and John W. Fisher III. Efficient topology-controlled sampling of implicit shapes. In Proceedings

of the IEEE International Conference on Image Processing (ICIP), Sept 2012.
[3] J. Hernandez, N. Karianakis, and S. Soatto. Information driven exploration using poisson sampling over ising

marginals. In In preparation, June 1 2012.
[4] Ke Jiang, Brian Kulis, and Michael Jordan. Small-variance asymptotics for exponential family dirichlet process

mixture models. In P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems 25, pages 3167–3175, 2012.

[5] Vasiliy Karasev, Alessandro Chiuso, and Stefano Soatto. Controlled recognition bounds for visual learning
and exploration. In P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems 25, pages 2924–2932, 2012.

[6] Sergey Karayev, Tobias Baumgartner, Mario Fritz, and Trevor Darrell. Timely object recognition. In P. Bartlett,
F.C.N. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 899–907, 2012.

[7] Brian Kulis and Michael Jordan. Revisiting k-means: New algorithms via bayesian nonparametric. In
Proceedings of the 29th International Conference on Machine Learning, 2012.

[8] Dahua Lin and John W. Fisher III. Coupling nonparametric mixtures via latent dirichlet processes. In P. Bartlett,
F.C.N. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 55–63, 2012.

[9] Dahua Lin and John W. Fisher III. Efficient sampling from combinatorial space via bridging. In Neil Lawrence
and Mark Girolami, editors, Proceedings of the Sixteenth International Conference on Artificial Intelligence
and Statistics, pages 694–702, April 2012.

[10] Dahua Lin and John W. Fisher III. Low level vision via switchable markov random fields. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2432–2439, June 2012.

[11] Dahua Lin and John W. Fisher III. Manifold guided composite of markov random fields for image modeling.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2176–2183, June 2012.
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In Proc. IEEE Workshop on Statistical Signal Processing, August 2012.

[13] Donglai Wei, Dahua Lin, and John W. Fisher III. Learning deformations with parallel transport. In Proceedings
of the 12th European conference on Computer Vision - Volume Part II, ECCV’12, pages 287–300, Berlin,
Heidelberg, 2012. Springer-Verlag.

[14] Randi Cabezas. Aerial reconstructions via probabilistic data fusion. S.m. thesis, Massachusetts Institute of
Technology, 2013.

[15] Jason Chang and John W. Fisher, III. Topology-constrained layered tracking with latent flow. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), Dec 2013.

[16] Jason Chang and John W. Fisher III. Object tracking with topology constraints and gaussian process flow.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Dec 2013.

[17] Jason Chang and John W. Fisher III. Parallel sampling of dp mixture models using sub-cluster splits. In
Advances in Neural Information Processing Systems 26, pages 620–628. Dec 2013.

[18] Jason Chang, Donglai Wei, and John W. Fisher III. A video representation using temporal superpixels. In
Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), June 2013.

[19] Yuxin Chen and Andreas Krause. Near-optimal batch mode active learning and adaptive submodular
optimization. In International Conference on Machine Learning (ICML), 2013.

[20] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. DeCAF:
A deep convolutional activation feature for generic visual recognition. CoRR, abs/1310.1531, 2013.

[21] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. CoRR, abs/1311.2524, 2013.

[22] Judy Hoffman, Eric Tzeng, Jeff Donahue, Yangqing Jia, Kate Saenko, and Trevor Darrell. One-shot adaptation
of supervised deep convolutional models. CoRR, abs/1312.6204, 2013.

[23] D. Levine and J. P. How. Sensor selection in high-dimensional gaussian trees with nuisances. In Proc. Neural
Information and Processing Systems (NIPS), 2013. to appear.

[24] D. Levine, B. Luders, and J. P. How. Information-theoretic motion planning for constrained sensor networks.
J. Aerospace Information Systems (JAIS), 2013. to appear.

[25] Y. Zeng, C. Wang, Stefano Soatto, and S.-T. Yau. Nonlinearly constrained mrfs: Exploring the intrinsic
dimensions of higher-order cliques. June 2013.
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Information Processing Systems (NIPS), Dec 2014.
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In Proceedings of the European Conference on Computer Vision (ECCV), Sept 2014.

[29] Yuxin Chen, Hiroaki Shioi, Cesar Fuentes Montesinos, Lian Pin Koh, Serge Wich, and Andreas Krause. Active
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of the Seventeenth International Conference on Artificial Intelligence and Statistics, pages 220–228, 2014.

[31] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.
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domains, 2014.
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8 Supplementary Material
The following includes presentation material referenced in the main report.

8.1 3D Scene Modeling
The methodology for constructing 3D information of the scene is described in the material provided in this
section. It was noted during the course of the program that the quality of the reconstruction, upon which accu-
rate spatial reasoning depends, is impacted accuracy of the intrinsic parameters of the cameras and knowledge
of the sensing geometry. The former was provided, but the latter was not. Consequently, state-of-the-art
methods employing automatic detection of correspondences were utilized. The accuracy of these methods
depends greatly on both the sensor geometry and the content of the scene. For some of the scenes, these
were not adequate to yield acceptable performance and as a result, manual correspondences were needed.
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agenda

1.3-d reconstruction pipeline
– correspondence

– local pose estimation

– global refinement

– gauge fixation

2.analysis

1. reconstruction pipeline
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correspondence

● standard approach:
– interest point detection

– SIFT descriptors

– brute-force matching

– homography 

– outlier rejection (RANSAC)

● if that fails:
– manual correspondence

– DLT

7/24

relative poses (local)

● projection matrices
● Euclidean homography
● four decompositions of the form

(twisted pair)
● may need to pick solution manually
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planar bundle adjustment

● objective function

with
– correspondences

– pairwise homography
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planar bundle adjustment

● “world” plane

● “local” plane
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mutual distances

15/24

gauge fixation

● global scale is just the “units”
● but: 

– common to remote pairs

– initialization of bundle adjustment

– some predicates may depend on it

● post-mortem scale adjustment
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result

2. analysis
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correspondence

• co-visible region
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• shadows
• distortion
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priors

● planarity assumption
● HUMINT

– co-visibility

– correspondence

● GPS data
– unreliable elevation
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planarity assumption
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Improved Scene Representation in MSEE Phase III

Uncertainty in 3D representation.

Multi-view tracking.

More complete scene understanding for solid objects.

More complete treatment of mobile cameras.

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 2 / 25

Uncertainty in 3D Reasoning

Uncertainty in 3D Reasoning

Question: How uncertainty in 3D understanding affects predicates
performance?

Affects reconstruction, tracking, camera positions, object positions, etc.

How to quantify - both in terms of algorithms, experiments, and ground
truth data.

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 3 / 25

(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing

October 22, 2015 27

 
Approved for public release; distribution unlimited. 



Uncertainty in 3D Reasoning

Uncertainty in 3D Reasoning

3D errors mostly created between image processing of acquired footage,
image correspondence, and 3D reconstruction phases.

3D uncertainty propagates to the predicates.

Reconstruction Reconstruction Predicates Tracking 

Scene Modeling 

Classification 

Acquisition 

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 4 / 25

Uncertainty in 3D Reasoning

Uncertainty in 3D Reasoning

3D understanding in our implementation is encapsulated by 3D wrapper
functions:

Given a 2D point, fetch the 3D location.
Can include uncertainty estimates.

Reconstruction Reconstruction Predicates Tracking 

Scene Modeling 

Classification 

Acquisition 

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 5 / 25
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Uncertainty in 3D Reasoning

Uncertainty in 3D Reasoning

Many predicates benefit from 3D reasoning:

1 Clear line of sight, Occluding

2 Below, On, Closer, Farther, Together

3 Running, Sitting, Standing, Stopping, Turning, Walking, Crawling,
Stationary, Entering, Exiting,

Some of them are relative, and some are absolute.

Tracking is key for most.

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 6 / 25

Uncertainty in 3D Reasoning

Uncertainty in 3D Reasoning

The desired multiview tracking system should handle tracked objects in
0,1,2+ views.

Should lend itself to analysis, prediction, and resource allocation.

Some views are more informative for 3D location.

Some views may be informative due to other data (appearance)

Some view pairs are more informative.

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 7 / 25
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Uncertainty in 3D Reasoning

Uncertainty in 3D Reasoning

Two examples of camera coverage - a good multiview tracker with
uncertainty should cope with both!
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Uncertainty in 3D Reasoning

Geometric Uncertainty in Predicates Computation

Several sources of for predicate errors related to object locations – among
others:

Segmentation errors

Tracking errors

3D camera reconstruction errors

3D object reconstruction errors

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 9 / 25
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Uncertainty in 3D Reasoning

Geometric Uncertainty Sources in Predicates Com-
putation

Segmentation errors - wrong object boundary.

Tracking errors - loss of tracking to background, switched tracks, tracks
created from camera artifacts.

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 10 / 25

Uncertainty in 3D Reasoning

Geometric Uncertainty Sources in Predicates Com-
putation

3D camera reconstruction errors - affect multiple objects.

3D object reconstruction errors

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 11 / 25
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Uncertainty in 3D Reasoning

Geometric Uncertainty Sources in Predicates Com-
putation

In many cases, 2D/image-based predicates approximate 3D-based ones.

They work better than 3D (as we tested..) when we do not have a good
3D scene model, and make some simplifying assumptions (i.e. implicit
priors)

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 12 / 25

Uncertainty in 3D Reasoning

Geometric Uncertainty Sources in Predicates Com-
putation

Modeling 3D uncertainty would allow us to get the best of both worlds,
by accounting both for error given 3D representation, and the
representation error.

Ample test data, where using all the viewpoints provides a stable 3D
reconstruction/“ground truth”, would allow us to quantify that.

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 13 / 25
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Uncertainty in 3D Reasoning

Reconstruction Error Sources

Mostly - errors introduced from features

Small scale feature localization errors – these relate to noise/artifacts
and inaccuracy in feature localization

Correspondence error – relate to mismatches of feature points.

Correspondences are usually sampled in order to find the MAP solution
(RANSAC). Correspondence errors often lead to reconstruction catastrophies.
Correspondences quality is a known question in comp. vision. with strong
effect on the results.

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 14 / 25

Uncertainty in 3D Reasoning

Reconstruction Error Sources

Image correspondence errors - less common. Avoiding these depends on
a strongly connected scene graph with many overlaps. Sensors
GPS/location helps avoid some errors.

Reconstruction packages (such as VSFM) provide some support for
dictating image correspondences.

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 15 / 25
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Efficient Multiview Tracking in Complex Scenes

Several approaches available for incorporating multiple views into
tracking and classification

In many cases, track loss can be minimized by combining hypotheses
from multiple views.

This includes both geometric reasoning (2D-3D association) and
photometric reasoning

Regardless of the specific method for dealing with the complexity of the
space (Pruning/MHT, Sampling, DP/MAP, ..)

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 16 / 25

Efficient Multiview Tracking in Complex Scenes

Incorporating 2D-3D association

Track then reconstruct

Reconstruct then track

General association
With a 3D representation that explains 2D observations.

Note that generative models lend themselves for incorporating multi-sensor
and multi-view data.
For efficiency reasons, we may favor 2D tracking, followed by 3D association.

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 17 / 25
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Scene Representation

Scene representation

Scene graph

nodes = locations/camera poses

collection of photometric
attributes (features)

edges = overlapping views

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 18 / 25

Scene Representation

Scene representation

View graph

associated with a node of the
scene graph

nodes = geometric/photometric
attribute

edges connecting points belonging
to the same surface

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 19 / 25
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Scene Representation

Dense limit
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Fig. 3. Our results on the ‘schwanstein’ sequence (top) compared to [?] (bottom)

Fig. 4. Segmented mesh for the ‘paper model’ scene. THIS IS MAYBE TEMPO-
RARY

3.2 Natural Outdoor Scene

4 Conclusions
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Scene Representation

Semantic representation

Scene representation partitioned into objects.
Objects project onto image, providing pixel-level video object
segmentation.

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV

#774
ECCV

#774

ECCV-14 submission ID 774 11

input labels provided by hand-drawn bounding boxes for small subsets of the
sequences (approx. one tenth of the frames for ‘paper model’, and approx. one
third of the frames for ‘castle’), as opposed to training off-the-shelf detectors
for our sequences and running them at every frame. Qualitatively, the ‘paper
model’ sequence shows the only semantic labeling error with the ‘pyramid’ label
not being found. This is a failure case due to under-segmentation of the scene,
since the pyramid gives effectively no occlusion cues, and very weak geometric
cues that it is a separate object from the table top.

Fig. 5. Results on ‘paper model’ sequence. Our output semantic labeling (top) with
colors (blue, red, green) for (building, arch, tower). Note the pyramid is missed. Our
output object segmentation (second), video segmentation results from [52] tuned for
temporal consistency (third), results from [52] tuned for similar number of segments
to our results (fourth), single image segmentation results from [55] tuned for similar
number of segments.
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Filtering for representation

Representation inference

“MAP” approach:

Geometry reconstructed through one of many variants of bundle adjustment.
No topology, no uncertainty estimate in the reconstruction
This was the approach adopted in first evaluation (see below).

Bayesian approach:

Geometry and local photometry estimated as part of a filtering process.
Allows incorporation of inertial sensing priors.
Benefits from continuous camera trajectories (see below).
Provides uncertainty estimates on pose as well as scene geometry.

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 22 / 25

Filtering for representation

Corvis

Boelter Hall loop I
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Filtering for representation

Corvis

Boelter Hall loop II

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 24 / 25

Filtering for representation

3D scene understanding in Phase 3 – summary

Uncertainty quantification in a point-estimate setting.

Incorporating 3D reasoning into tracking.

Partition the scene into objects/primitives (e.g. groups of points and
their connectivity)

Testing of filtering approach provided sequences are given with
accurately synchornized video taken from a moving platform (e.g.
quadrotor) with no rolling shutter artifacts

G. Rosman et al (MIT CSAIL SLI) MSEE Phase 3 25 / 25
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(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing

8.2 Object Tracking
As part of pre-processing the MIT design tracks all movers, storing the results in a database. Both the
location (within the sensor view) and the boundary of the object are computed. The tracker was partially
developed under the MSEE program and implements layered tracking, adaptive appearance models, and
occlusion reasoning.
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Tracking: Why Do We Need Tracking?

Queries over time windows ⇒ Need data association across frames

Example: how many cars appear in the sequence above?
To report the right answer (one), we need to know it is the same car.

Chang et al. (MIT CSAIL SLI) Tracking Apr 24, 2014 3 / 22

The Tracker: A Layered Representation

1 N + 1 classes: background + N objects.
2 Object j is represented as a binary mask, denoted Mj .
3 Depth ordering: Z is permutation of {1, . . . , N}. E.g. if N = 4 and
Z = (1, 3, 4, 2), then object 2 is the closest to the camera.

4 L(x) ∈ {0, 1, . . . , N}: pixel label at location x.
If maxj∈{1,...,N}M t

j (x) = 0 then it is background: L(x) = 0. Otherwise,

L(x) = arg max
{j:Mj(x)=1}

Z(j)

(video)

Chang et al. (MIT CSAIL SLI) Tracking Apr 24, 2014 8 / 22
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The Tracker: Probabilistic Modeling

1 Binary maps updates: M t
j (x) given by

arg max
Mt

j (x)∈{0,1}
Pr(M t

j (x)|I(x),

latent variables︷ ︸︸ ︷
Z︸︷︷︸

ordering

, A︸︷︷︸
appearance

, v︸︷︷︸
velocity

,M t−1
j (x))

2 Appearance:

models: p(I(x)|A(j), L(x) = j) parameters: A = (A(0), A(1), . . . , A(N))

3 N velocities: v = (v(1), . . . , v(N))

4 Depth ordering: Z

Chang et al. (MIT CSAIL SLI) Tracking Apr 24, 2014 9 / 22

Appearance

1 The parameters: A = (A(0), A(1), . . . , A(N))
2 (A) A pixel-wise background model:

A(0) = A(0)(x) p(I(x)|A(j), L(x) = 0) ∼ N (

A(0)(x)︷ ︸︸ ︷
µ(0)(x),Σ(0)(x))

(B) Each object has one GMM model:

A(j) j>0
= {w(j)

k , µ
(j)
k ,Σ

(j)
k )}Kk=1

p(I(x)|A(j), L(x) = j) ∼
K∑

k=1

w
(j)
k N (µ

(j)
k ,Σ

(j)
k )
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Appearance: Initial Background Model

Temporal Median: m(x) = median(It=1(x), It=2(x), . . .)
µ(0)(x)← m(x)
Σ(0)(x)← 1

#frames−1
∑

t(It(x)−m(x))T (It(x)−m(x))

Zooming in:

Chang et al. (MIT CSAIL SLI) Tracking Apr 24, 2014 11 / 22

Velocity
Object velocity implies a per-pixel prior

1 v
(j)
t−1: velocity of object i between frame t− 2 and frame t− 1.

2 Applying v
(j)
t−1 to M t−1

j yields a new mask at frame t.

3 Distances from the new mask are used to (inversely) weight the pixels.

4 Pixels far from the new mask are unlikely to be classified as object j at
frame t

Chang et al. (MIT CSAIL SLI) Tracking Apr 24, 2014 12 / 22
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Ordering: θord

1 Explicit modeling of the ordering helps to deal with occlusions.

2 Z = a permutation of {1, . . . , N}
3

p( I︸︷︷︸
color

| A︸︷︷︸
appearance

, Z︸︷︷︸
ordering

,M1, . . . ,MN︸ ︷︷ ︸
object masks

)

Propose Z ′; if p(I|A,Z ′, {Mj}Nj=1) > p(I|A,Z, {Mj}Nj=1) then Z ← Z ′.
4 There are N ! options – but we only need to consider a subset of these:

If objects don’t overlap, their depth ordering doesn’t matter

Chang et al. (MIT CSAIL SLI) Tracking Apr 24, 2014 13 / 22

Parameter Updates

Lt is determined by binary masks and the ordering.

Given I, Lt can estimate new A.
Then use a convex combination with previous estimates.
E.g., A = α×Aold + (1− α)×Anew, where α = 0.1.

Given M t−1
j and M t

j can estimate new velocity.

Chang et al. (MIT CSAIL SLI) Tracking Apr 24, 2014 14 / 22
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Changing the Number of Objects
Use a simple heuristic to establish N

1 An object can “die” if doesn’t have enough image evidence.

2 For creating new objects, we consider, among the pixels labeled as
background, the connected components of low-likelihood pixels.

Chang et al. (MIT CSAIL SLI) Tracking Apr 24, 2014 15 / 22
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8.3 Object Classification
As part of pre-processing the MIT all movers and static objects are classified using a variant of Caffe adapted
to the MSEE object hierarchy. The implementation provided by ICSI (co-PI Darrell) did not fully implement
the hierarchy, but nevertheless provided reasonable performance on many objects of interest. One impact
on performance is that only the highest scoring class was maintained for each object. As such, errors in
the use of the classfier had an undue impact on system performance. More robust performance would be
obtained if a full or partial distribution were maintained as part of the pre-processing. This is feasible, but
would complicate query processing owing to the increased combinatorial complexity. Consequently, the
simple approach was chosen for phase 2.
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Tradi&onal	Vision	Models…	

Scanning  
Window HOG 

SIFT-VQ-BOW 

Convolve-Quantize-Pool à [Convolve-Quantize-Pool] 

 
 

Diagram from Krizhevsky et al., 2012 

Convolutional Layers 
Input 
Layer Fully-Connected 

Layers 
 

Fukushima’s Neocognitron 1974-82;  LeCun’s  LeNet, 1989; 
Krizhevsky, A., Sutskever, I., and Hinton., G. E.  ImageNet Classification with Deep Convolutional 
Neural Networks. In Proc. NIPS, 2012. 

…now,	CNN	ILSVRC	Architecture:	

Convolve-Quantize-Pool à [Convolve-Quantize-Pool] à [[Convolve-Quantize-Pool]]à … 

[Krizhevsky et al] 
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Object detection system 

(e.g., “selective search”) 

(With a few minor tweaks: 
       semantic segmentation) 

“Regions with CNN features” (R-CNN) 

Object detection 

person 

motorbike 

Input Desired output 

{  airplane,  bird,  motorbike,  person,  sofa  } 
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Evaluating a detector 

Test image (previously unseen) 

First detection ... 

‘person’ detector predictions 

0.9 

(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing
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Compare to ground truth 

ground truth ‘person’ boxes 

0.9 

0.6 

0.2 

‘person’ detector predictions 

Sort by confidence

... ... ... ... ...

✓ 𐄂 ✓ ✓ 𐄂 𐄂 

0.9 0.8 0.6 0.5 0.2 0.1

true
positive

(high overlap)

false
positive

(low overlap or
duplicate)
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Evaluation metric

Average Precision (AP)
    100%  is worst

100%  is best

mean AP over classes
(mAP)

... ... ... ... ...

✓ 𐄂 ✓ ✓ 𐄂 𐄂 

0.9 0.8 0.6 0.5 0.2 0.1

PASCAL VOC Challenge
Dataset:   22k images,   50k objects,   20 classes

Detect: people, horses, sofas, bicycles, pottedplants, ...

(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing
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Progress on PASCAL VOC

R-CNN 
R-CNN R-CNN 

DPM 
DPM, 

HOG+BOW 

DPM, 
MKL 

DPM++ 
DPM++, 

MKL 
DPM++, 

MKL, 
Selective

Search 

Progress on PASCAL VOC

DPM 

DPM, 
MKL 

DPM++ 
DPM++, 

MKL 
DPM++, 

MKL, 
Selective

Search 

Regionlets 
[Wang et al. 2013] 

SegDPM 
[Fidler et al. 2013] 

DPM, 
HOG+BOW 
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Progress on PASCAL VOC

DPM 

DPM, 
MKL 

DPM++ 
DPM++, 

MKL 
DPM++, 

MKL, 
Selective

Search 

Regionlets 
[Wang et al. 2013] 

SegDPM 
[Fidler et al. 2013] 

R-CNN R-CNN 
R-CNN (this work) 

DPM, 
HOG+BOW 

ImageNet LSVR Challenge

– 1000 classes   
(vs. 20)

– 1.2 million training images
(vs. 10k)

– Image classification
(not detection) bus anywhere?

[Deng et al. CVPR’09]
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Multi-layer feature learning
“SuperVision” Convolutional Neural Network (CNN)

ImageNet Classification with Deep Convolutional Neural Networks.
Krizhevsky, Sutskever, Hinton.  NIPS 2012.

cf.   LeCun et al. Neural Comp. ’89 & Proc. of the IEEE ‘98

input 5 convolutional layers fully connected

Impressive ImageNet results!

But... does it generalize to other datasets and tasks?

Spirited debate at ECCV 2012

1000-way image classification

metric: classification error rate  (lower is better)

Top-5 error

Fisher Vectors (ISI) 26.2%

5 SuperVision CNNs 16.4%

7 SuperVision CNNs 15.3%

now: 12%

(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing
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Objective

Can the SuperVision CNN detect objects?

Proposed system
R-CNN: “Regions with CNN features”

“selective search” [van de Sande et al. 2011]

[Girshick, Donahue, Darrell, Malik
to appear in CVPR’14]
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R-CNN results on PASCAL

metric: mean average precision (higher is better)

VOC 2007 VOC 2010

DPM v5 (Girshick et al. 2011) 33.7% 29.6%

UVA sel. search (Uijlings et al.
2012)

35.1%

Regionlets (Wang et al. 2013) 41.7% 39.7%

R-CNN 54.2% 50.2%

R-CNN + bbox regression 58.5% 53.7%

metric: mean average precision (higher is better)

VOC 2007 VOC 2010

DPM v5 (Girshick et al. 2011) 33.7% 29.6%

UVA sel. search (Uijlings et al.
2012)

35.1%

Regionlets (Wang et al. 2013) 41.7% 39.7%

R-CNN 54.2% 50.2%

R-CNN + bbox regression 58.5% 53.7%

R-CNN results on PASCAL

(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing
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ImageNet detection (ILSVRC2013)

R-CNN and OverFeat

OverFeat  [Sermanet et al. 2014] 
– developed using ILSVRC2013
– tested on ILSVRC2013: s-o-t-a
– no results on PASCAL VOC

R-CNN  [Girshick et al. 2014] 
– developed using PASCAL VOC
– tested on PASCAL VOC: s-o-t-a
– no results on ILSVRC2013

No apples-to-apples comparison

(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing
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R-CNN detector training

What did the network learn?

unit position        receptive fieldpool5 “data cube”
x 

y 
x 

y 

z 

Visualize pool5 units
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Questions?

(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing
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MSEE Phase 2 RCNN Component

• Leverage ImageNet-derived representation
(from Imagenet-1K)

• Use all ImageNet classes to train new class on
top of R-CNN model.

• Find Nearest class in Imagenet to MSEE
ontology.

• Fixed apriori mapping for P2

• Significant limitations: no Person subclasses

MSEE Phase 3 RCNN Plans

• Exploit adaptation (2 NIPS 2014 papers in
review)

• Take in-domain examples as well as ImageNet
training data

• Add new data for explicit person and vehicle
subclass

• Fast training on the fly

• Tree-based loss for reasoning within hierarchy

(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing

October 22, 2015

61 
Approved for public release; distribution unlimited. 



4.	Detec&on	as	Adapta&on:	
Generalizing	to	new	categories…	

• NIPS	2014,	in	review.	
• (To	be	released	on	arXiv,	ca.	July	2014)	

I CLASSIFY 

do
g 

ap
pl

e 

I 
DET 

do
g 

ap
pl

e 

I CLASSIFY 

ca
t 

W CLASSIFY 
dog 

W CLASSIFY 
apple 

Classifiers
W DET 

dog 

W DET 
apple 

Detectors

W CLASSIFY 
cat W DET 

cat I DET 

?	

Detec&on	as	Adapta&on	
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Abla&on	results	

Near	misses	of	adapted	models	

(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing
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Localiza&on	is	improved	

Localiza&on	is	improved	

(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing
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Detec&on	Summary	(RCNN	vs	
DPM)	

• ~150%	improvement	in	raw	performance	
training	from	ImageNet	alone	

• ~50%	improvement	in	raw	performance	when	
training	from	1—3	examples	in	domain	

(MSEE) Nonparametric Representations for Integrated Inference, Control, and Sensing
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